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Abstract

In addition to their cell-autonomous roles in mesoderm development, the zebrafish T-box 

transcription factors no tail a (ntla) and spadetail (spt/tbx16) are required for medial floor plate 

(MFP) formation. Posterior MFP cells are completely absent in zebrafish embryos lacking both 

Ntla and Spt function, and genetic mosaic analyses have shown that the two T-box genes promote 

MFP development in a non-cell-autonomous manner. Based on these observations, it has been 

proposed that Ntla/Spt-dependent mesoderm-derived signals are required for the induction of 

posterior but not anterior MFP cells. To investigate the mechanisms by which Ntla and Spt 

regulate MFP development, we have used photoactivatable caged morpholinos (cMOs) to silence 

these T-box genes with spatiotemporal control. We find that posterior MFP formation requires 

Ntla or Spt activity during early gastrulation, specifically in lateral margin-derived cells that 

converge toward the midline during epiboly and somitogenesis. Nodal signaling-dependent MFP 

specification is maintained in the absence of Ntla and Spt function; however midline cells in 

ntla;spt morphants exhibit aberrant morphogenetic movements, resulting in their anterior 

mislocalization. Our findings indicate that Ntla and Spt do not differentially regulate MFP 

induction along the anterior-posterior axis; rather, the T-box genes act redundantly within margin-

derived cells to promote the posterior extension of MFP progenitors.

INTRODUCTION

The medial floor plate (MFP) is a specialized group of cells that occupies the ventral-most 

region of the vertebrate neural tube.1 This transient structure acts as a critical organizing 

center during neural development, secreting signaling molecules such as Sonic hedgehog 

(Shh) to regulate dorsal-ventral patterning and commissural axon guidance within the spinal 
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cord.2–5 How the MFP is specified, organized, and maintained are enduring questions that 

have inspired divergent models. It was initially proposed that the MFP originates from the 

neural plate midline, induced by Shh expressed by the underlying notochord.6 Notochord 

ablation can disrupt MFP formation in chick embryos, and notochord grafts can promote 

neural plate differentiation into MFP in ovo and in vitro. High concentrations of Shh can 

also induce the expression of MFP markers in avian neural plate explants,7–9 and mice 

lacking Shh, the transmembrane receptor Smoothened (Smo), or the transcription factor Gli2 

fail to form MFP,10–13 suggesting a conserved role for notochord- and Hedgehog (Hh) 

signaling-dependent MFP formation in amniotes.

Subsequent studies in anamniotes such as zebrafish supported an alternative model for MFP 

ontogeny. Zebrafish with mutations in the T-box gene no tail-a (ntla), an ortholog of 

Brachyury, form the MFP despite a complete absence of notochord cells, and cell lineage 

analyses indicate that the zebrafish MFP stems from pluripotent precursors located within 

the dorsal organizer (embryonic shield).14, 15 Cells specified to become MFP are then 

inserted into the midline of the neural tube as gastrulation proceeds. Genetic and chemical 

perturbations have further demonstrated that MFP induction in zebrafish does not require 

orthologs of Shh (Shha and Shhb), Indian hedgehog (Ihhb), Smo, or Gli2 (Gli2a).16–20 

Rather, MFP development is disrupted in cyclops (cyc) and one-eyed pinhead (oep) mutants, 

which lack the Nodal-related-2 (Ndr2) ligand and its receptor teratocarcinoma-derived 

growth factor-1 (Tdgf1), respectively.21–26 Both ndr2 and tdgf1 are expressed within the 

shield, and studies using a temperature-sensitive cyc mutant have shown that Nodal 

pathway-dependent MFP induction occurs during early gastrulation.27 Nodal signaling may 

act at least in part by suppressing Ntla, since loss of ntla function rescues trunk MFP in cyc 

and oep mutants.25, 28 Ndr2 is similarly not required for trunk and tail MFP formation in the 

absence of a second T-box gene, spadetail (spt/tbx16), which regulates paraxial mesoderm 

patterning.29–31

Despite these disparate models of MFP development, several findings indicate that the 

mechanisms of MFP formation are more conserved between amniotes and anamniotes than 

has been previously appreciated. Chick embryos subjected to notochord ablation can 

eventually form MFP cells after a temporal delay,32 suggesting that MFP induction involves 

early, notochord-independent processes. Consistent with this idea, studies of quail-chick 

chimeras demonstrate that MFP and notochord cells originate from the avian equivalent of 

the dorsal organizer, Hensen’s node, with MFP progenitors inserting into the neural plate as 

the node regresses caudally.33 Nodal signaling can also cooperate with Shh to promote MFP 

marker expression in avian neural plate explants.34 Conversely, although zebrafish with 

inactivating Hh pathway mutations can form the MFP, they prematurely lose expression of 

MFP markers at later developmental stages.20 Moreover, cyc and oep mutants gradually 

acquire MFP cells in a shha- and smo-dependent manner.25, 35 Thus, apparent species-

specific differences in MFP development may merely reflect varying contributions of Hh 

and Nodal signaling to MFP specification and maintenance.

Amidst these evolving and converging models, how T-box genes contribute to MFP 

development has remained a long-standing paradox. The MFP domain is broadened in 

zebrafish lacking either ntla or spt, indicating that these transcription factors restrict MFP 
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fate specification.14, 28, 31 However, MFP cells are completely missing from the trunks and 

tails of ntla;spt mutants, and cell transplantation experiments have demonstrated that the two 

T-box genes are non-cell-autonomously required for caudal MFP formation.31 Based on 

these ostensibly opposing activities, it has been postulated that Ntla and Spt redundantly 

produce an early inductive signal for MFP specification and act later to restrict MFP cell 

fates.31 The loss of posterior MFP in embryos lacking Ntla and Spt function has also been 

interpreted as evidence for rostrocaudal differences in MFP induction.31 Reconciling these 

divergent roles of Ntla and Spt in MFP development has been a challenge, in part due to the 

constitutive loss of function in their corresponding mutants.

Here we describe our investigations of Ntla/Spt-dependent MFP development using cyclic 

caged morpholinos (cMOs). These photoactivatable reagents convey spatiotemporal control 

of gene function, allowing us to examine when and where these T-box genes act to promote 

posterior MFP patterning. We find that knockdown of Ntla and Spt function in the lateral 

margins of early gastrulae causes loss of caudal MFP, recapitulating this aspect of the 

ntla;spt mutant phenotype. The spatial separation of these targeted cells and MFP 

progenitors within the dorsal organizer argues against a Ntla/Spt-dependent signal that 

coincides with MFP induction. Nodal and Hh signaling are correspondingly intact in 

zebrafish embryos injected with both ntla and spt MOs, and these double morphants have 

similar numbers of shha-expressing MFP cells as embryos lacking ntla function alone. We 

instead observe that lateral margin-derived cells converge toward the midline during 

gastrulation and that MFP cells fail to extend caudally in ntla;spt morphants. Our results 

support a model in which T-box genes redundantly and non-cell-autonomously promote 

posterior MFP formation by regulating the morphogenetic movement of progenitor cells.

METHODS

Zebrafish husbandry

Adult wildtype zebrafish (Danio rerio; AB strain) were obtained from the Zebrafish 

International Resource Center (ZIRC), and Tg(−2.4shha-ABC:GFP) zebrafish were 

obtained from U. Strähle.36 All adults were maintained according to standard protocols,37, 38 

and all embryos were obtained by natural matings and cultured at 28.5 °C.

Morpholino reagents and photoactivatable lineage tracers

Antisense MOs (Gene-Tools) targeting the following genes were microinjected into 1- to 4-

cell-stage embryos: ntla (5′-GACTTGAGGCAGACATATTTCCGAT-3′) and spt (5′-

CTCTGATAGCCTGCATTATTTAG CC-3′). Each oligonucleotide was injected at a dose 

of 1.5 ng/embryo, either separately or in combination. A photoactivatable spt cMO with the 

oligonucleotide sequence above was synthesized as described39 and injected at a dose of 1 

ng/embryo when utilized alone or 0.375 ng/embryo when combined with the ntla MO.

Caged fluorescein-conjugated dextran (cFD) was synthesized as reported.40 Caged Q-

rhodamine-conjugated dextran (cRD) was similarly prepared with minor modifications. 

NVOC2-5-carboxy-Q-rhodamine (Sigma-Aldrich) (2.50 mg, 2.68 μmol), N,N-

diisopropylethylamine (1.40 μL, 8.02 μmol), and N,N,N′,N′-tetramethyl-O-(N-succinimidyl) 
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uronium tetrafluoroborate (1.00 mg, 3.32 μmol) were dissolved in DMF (103 μL), and the 

solution was stirred at room temperature in the dark for 16 h. The reaction was then 

partitioned between EtOAc and 10% (w/v) aqueous citric acid, and the organic layer was 

washed twice with water and brine, dried over anhydrous MgSO4, filtered and concentrated 

in vacuo to afford the NHS ester (1.91 mg, 69%). 1H NMR (300 MHz, CDCl3): 1.96 (m, 

4H), 2.63 (m, 4H), 2.99 (br s, 4H), 3.83 (m, 4H), 3.93 (s, 6H), 3.99 (s, 6H), 5.70 (m, 4H), 

6.49 (s, 2H), 7.06 (s, 2H), 7.32 (d, J = 8.1 Hz, 1H), 7.76 (s, 2H), 7.82 (br s, 2H), 8.44 (dd, J 

= 8.1, 1.5 Hz, 1H), 8.85 (d, J = 1.5 Hz, 1H). NVOC-5-carboxy-Q-rhodamine NHS ester 

(1.91 mg, 1.85 μmol) was added to a suspension of 10,000-MW aminodextran (3.50 mg, 

0.350 μmol; Life Technologies) in 500 μL of 0.1 M Na2B4O7 buffer (pH 8.5), and the 

reaction was vortexed in a 1.5-mL microcentrifuge tube overnight. The reaction mixture was 

added to a Zeba spin desalting column (Thermo Scientific), and the cRD-containing eluent 

was lypophilized. Both cFD and cRD were injected into 1- to 4-cell stage zebrafish as 0.2% 

(w/v) aqueous solutions (3 nL/embryo).

Photoactivation of caged reagents

To globally irradiate pools of zebrafish embryos, a 6-well microplate was mounted onto a 

mirrored surface and then fixed onto a Vortex-Genie 2 (Scientific Industries). Chorionated 

embryos were added to a single well filled with E3 medium, agitated with the vortexer on 

setting 1, and irradiated for 15 minutes with a 365–370 nm LED source (Stanford 

Photonics). LED current was maintained at 7 A, resulting in a light intensity of 10.6 

mW/cm2 at the well bottom. For individual, global irradiations, chorionated embryos were 

arrayed in an agarose template (560-μm x 960-μm wells) filled with E3 medium, oriented 

with the animal pole facing up. Each embryo was then irradiated for 15 seconds using a 

Leica DM4500B upright compound microscope equipped with a mercury lamp, an A4 filter 

(Ex: 360 nm, 40-nm bandpass), and a 20x/0.5 NA water-immersion objective. The light 

intensity at the focal point was measured to be 410 mW/cm2. For spatially localized 

uncaging, chorionated shield-stage embryos were positioned in agarose templates and 

irradiated for 15 seconds using the Leica DM4500B system described above. Using 

adjustable diaphragms, the irradiation area was limited to either a 100-μm-diameter circular 

region or a 200-μm x 400-μm rectangular region.

Whole-mount immunostaining and in situ hybridization

Embryos were fixed at the desired developmental stage in 4% (w/v) paraformaldehyde in 

PBS and then immunostained as described41 and imaged with the Leica DM4500B 

microscope. The following antibodies were used: mouse monoclonal anti-Tbx16 (1:100 

dilution, ZIRC, ZDB-ATB-081002-3), rabbit polyclonal anti-Ntla (1:100 dilution),40 mouse 

monoclonal anti-fluorescein (1:200 dilution, Roche, 1425320), and rabbit polyclonal anti-

fluorescein (1:50 dilution, Molecular Probes, A-889).

Whole-mount in situ hybridization of RNA transcripts was performed according to standard 

protocols.42 The ptch2 riboprobe has been previously described.43 To obtain additional 

probes, zebrafish cDNA was prepared from RNA extracted from bud-stage (10 hours post 

fertilization; hpf), 8-somite (13 hpf), and 26-somite (22 hpf) embryos with an RNAqueous-

Micro Kit (Ambion) and reverse-transcribed with the SuperScript III First-Strand Synthesis 
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System (Life Technologies). The following T7 promoter-containing, gene-encoding PCR 

products were then amplified with the designated primers (T7 sequence underlined): shhb 

(5′-TGAGGGACGGGCAGTGGACA-3′ and 5′-

CGTAATACGACTCACTATAGGGCGCGGTGA CTGGCGCAAAAG-3′), ndr2 (5′-

CTCGGAGTGTTCGGAAAGCA-3′ and 5′-

CGTAATACGACTCACTATAGGGAGATCGCCACGTAGTGGTTG-3′), lft2 (5′-

CCCGGCTCACATTAAGAGCA-3′ and 5′-

CGTAATACGACTCACTATAGGGAGCACCTCCACCCAGTAGAT-3′), tdgf1 (5′-

GATCTCCCCTGTTGAACGCA-3′ and 5′-

CGTAATACGACTCACTATAGGGATGGGCCAAATGGACGACTT-3′), pitx2a (5′-

CCTCCAGTCCAGAGTCCGTA-3′ and 5′-

CGTAATACGACTCACTATAGGGTCCATCACAGGATTGGACGC-3′). Riboprobes 

were in vitro transcribed from these templates using a MEGAscript T7 Transcription Kit 

(Life Technologies), substituting kit nucleotides with a digoxigenin RNA labeling mix 

(Roche). Embryos were imaged using a Leica M205FA stereomicroscope.

Time-lapse microscopy

Chorionated, shield-stage embryos were inserted into an agarose template filled with E3 

medium, oriented with the shield facing down. Imaging was performed with a Leica 

DMI6000B inverted compound microscope controlled by MetaMorph software (Molecular 

Devices). Fluorescent signals were acquired with auto-exposure control to account for 

progressive photobleaching, and ImageJ software was used to adjust brightness and 

recursively align stacked images using the StackReg and TurboReg plug-ins.44

Flow cytometry

Tg(−2.4shha-ABC:GFP) and wildtype AB zebrafish were crossed, and the resulting 

embryos were injected with ntla and/or spt MOs. For each experimental condition, 15 to 20 

embryos heterozygous for the GFP reporter were dissociated into single cells as described.40 

The cells were then analyzed on a BD FACSAria sorter equipped with a 100-μm nozzle. The 

population of viable, single zebrafish cells was identified through forward- and side-scatter 

gating and used to determine the percentage of GFP-positive cells for each sample.

Quantitative RT-PCR

For each experimental condition, total RNA was isolated from 30 embryos using the 

RNAqueous-Micro Kit, and 3 μg was converted into first-strand cDNA using the 

SuperScript III First-Strand Synthesis System. The resulting 20-μL solution of cDNA was 

diluted 1:10 with water, and 2 μL was used as the template for analysis with shhb 

(Dr03112045_m1, 4351372) and eef1a1l1 (Dr03432748_m1, 4331182) TaqMan probes 

(Life Technologies) and a Light Cycler 480II (Roche).

RESULTS AND DISCUSSION

Functional validation of ntla and spt MOs

To facilitate our studies of Ntla/Spt-dependent MFP development, we first investigated the 

ability of previously reported MOs41, 45 to recapitulate the ntla, spt, and ntla;spt mutant 
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phenotypes.31 Zygotic transcription of ntla is initially observed throughout the germ ring at 

the onset of gastrulation (shield stage, 6 hpf) and becomes restricted to the axial mesoderm 

and tailbud at later stages.15 ntla mutants correspondingly fail to form the notochord and tail 

mesoderm and exhibit mispatterned, U-shaped somites.14 In comparison, spt is ubiquitously 

expressed in sphere-stage (4 hpf) embryos and then becomes localized to the germ ring by 6 

hpf.30 As epiboly proceeds, this T-box gene is excluded from the shield but maintained in 

the prechordal mesoderm, ventrolateral regions of the gastrula margin, and the paraxial 

hypoblast. Trunk somites are missing in spt mutants, and muscle progenitors mislocalize to 

the tailbud.29 In comparison, ntla;spt mutants are devoid of both trunk and tail mesoderm, 

indicating that the two T-box genes have synergistic and/or redundant functions.31 Embryos 

injected with our ntla and spt MOs, either individually or in combination, faithfully 

reproduced these morphological phenotypes (Supplementary Figure 1).

We further confirmed that our ntla and spt MOs can phenocopy the MFP patterning defects 

observed in single and double mutants. Wildtype zebrafish and spt mutants specifically 

express shha in the notochord and MFP, while ntla and ntla;spt mutants exhibit only shha-

positive MFP cells since they fail to specify notochord progenitors.31 We therefore 

examined the effects of these MOs on shha expression using Tg(−2.4shha-ABC:GFP) 

embryos.36 Consistent with previous mutant analyses,31 the posterior MFP was disrupted in 

ntla;spt morphants (Supplementary Figure 2a). Identical morphant phenotypes were 

obtained using shhb as an alternative, more selective MFP marker (Supplementary Figure 

2b).46 Collectively, these findings validate the ntla and spt MOs as effective, specific tools 

for studying the roles of these T-box genes in MFP development.

MFP defects are evident by late gastrulation in ntla;spt morphants

To define the developmental stage(s) by which MFP defects occur in the absence of ntla 

and/or spt function, we conducted a time-course analysis of shhb expression in the 

corresponding morphants. We found that loss of either T-box gene resulted in the premature 

appearance of shhb-expressing dorsal cells in shield-stage embryos (Figure 1a). 

Transcription of shhb was also initiated early in ntla;spt morphants, encompassing a broader 

dorsal domain than that observed in the single morphants. By 90% epiboly (9 hpf), both 

wildtype and morphant embryos had axial shhb-expressing cells continuously spanning the 

anterior-posterior axis (Figure 1b). Double morphants also exhibited shhb expression 

throughout the germ ring, which coincided with ectopic Hh target gene transcription (ptch2) 

(Supplementary Figure 3). By the end of gastrulation (10 hpf), wildtype and single 

morphants maintained a continuous domain of axial shhb-positive cells along the anterior-

posterior axis (Figure 1c); however, the ntla;spt morphants began to show gaps in shhb 

expression between the tailbud and more anterior midline cells. This discontinuity became 

significantly more pronounced by the 8-somite stage (13 hpf), at which time the shhb-

positive cells in double morphants appeared to occupy an expanded anterior domain in 

comparison to those in wildtype embryos and single morphants (Figure 1d).

Ntla and Spt act during early gastrulation to promote MFP development

Since zebrafish lacking ntla and spt function exhibit defects in shhb expression by the end of 

epiboly, we hypothesized that the two T-box genes redundantly promote posterior MFP 
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formation during gastrulation. To examine the timing of ntla and spt action in this process, 

we explored the application of photoactivatable cMOs. Cyclic cMOs targeting ntla or spt are 

effective tools for regulating each gene individually;39, 45 however, we observed that their 

combined basal activities caused light-independent mesoderm defects by 24 hpf (A. Payumo 

and J. Chen, data not shown). This is likely due to the reciprocal regulation of the two genes; 

ntla transcription is significantly diminished in the dorsal side of spt mutant gastrulae,47 and 

spt transcription is partially reduced in the hypoblasts of ntla mutants.30 The ntla and spt 

cMO basal activities therefore have synergistic effects on mesoderm development, and 

further improvements in cMO design will be necessary to realize the full potential of 

combinatorial applications.

We therefore considered combining the ntla MO with a spt cMO to achieve a light-

dependent transition between ntla and ntla;spt morphants. Zebrafish embryos injected with 

the spt cMO and cultured in the dark developed normally, whereas global 360-nm 

irradiation of these embryos at 3 hpf recapitulated the spt mutant phenotype (Figure 2a–b). 

Similarly, co-injection of the ntla MO and spt cMO without irradiation only resulted in 

morphological defects associated with loss of ntla function, as indicated by the absence of 

notochord and tail mesoderm and the presence of trunk somites (Figure 2c). Exposure of 

these ntla MO/spt cMO-injected embryos to 360-nm light at 3 hpf phenocopied the severe 

mesodermal deficits observed in ntla;spt mutants (Figure 2d).

We next validated the ability of the spt cMO to convey spatiotemporal control of Spt protein 

expression. As determined by whole-mount immunostaining, Spt knockdown was observed 

when zebrafish embryos were injected with the spt cMO, either alone or in combination with 

the ntla MO, and then irradiated at various developmental stages (Supplementary Figure 4a–

b). To confirm the ability of the spt cMO to induce regiospecific loss of Spt function, we 

injected caged fluorescein-conjugated dextran (cFD) with or without the spt cMO into 

zebrafish embryos, and then irradiated a circular, 100-μm-diameter region within the ventral 

margin at the shield stage (Supplementary Figure 4c). The embryos were then fixed at the 

bud stage and immunostained with anti-fluorescein and anti-Spt antibodies. As expected, Spt 

knockdown coincided with irradiated, fluorescein-positive cells in cFD/spt cMO-injected 

embryos (Supplementary Figure 4d).

We proceeded to use this optochemical approach to characterize the timing by which ntla 

and spt redundantly promote MFP formation. We injected embryos with the ntla MO and spt 

cMO and globally irradiated them at multiple time points spanning the blastula period (3 

hpf) and the end of gastrulation (10 hpf). The embryos were fixed at 24 hpf, and the 

resulting MFP phenotypes were scored according to the number and distribution of shhb-

expressing cells (Figure 3a). Class I morphants were defined to have severe mispatterning of 

the anterior MFP and clear deficits of trunk and posterior MFP, resembling ntla;spt mutants; 

class II morphants exhibited anterior MFP broadening and posterior MFP spanning at least 

the yolk extension; and class III morphants had normal anterior MFP patterning and 

posterior MFP continuing beyond the yolk extension.

Reproducing the MFP defects observed in ntla;spt mutants required photoactivation of the 

spt cMO in ntla morphants by the shield stage (6 hpf), and generating the ntla;spt morphant 
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even one hour later yielded significantly weaker MFP phenotypes (Figure 3b). Since Spt 

expression begins at 4 hpf, we examined the kinetics of Spt protein turnover in shield-stage 

embryos upon spt cMO uncaging. As determined by whole-mount immunostaining, Spt 

levels were significantly reduced within one hour, and maximum protein knockdown was 

achieved within two hours (Supplementary Figure 5). These observations indicate that Ntla 

and Spt act shortly after their expression domains coalesce to promote MFP development, 

consistent with their redundant contributions to this process.

Ntla/Spt activity in the lateral margins promotes MFP development

Ntla and Spt are co-expressed throughout the germ ring at the onset of epiboly, and we 

therefore sought to determine where they act within the gastrula margin to promote MFP 

development. We injected embryos with the ntla MO and spt cMO reagents as before and 

then irradiated rectangular domains (200 μm x 400 μm) that encompass dorsal, lateral, or 

ventral regions of the margin at 6 hpf (Figure 3c). Using the phenotypic classifications 

described above, we observed that spt cMO photoactivation in either of the lateral margins 

resulted in more severe MFP defects than those induced by targeting the dorsal or ventral 

domains. Suppressing Spt expression in both lateral margins led to even greater losses of 

posterior, shhb-expressing MFP cells, approaching the deficits observed in ntla;spt 

morphants or upon global spt cMO uncaging at 6 hpf (Figure 3d). Since MFP progenitors 

originate from the shield domain of dorsal margin,14 these findings support the non-cell-

autonomous function of these T-box transcription factors in posterior MFP development.31

Lateral margin-derived cells influence MFP progenitor movement

To better understand how lateral margin-derived cells might influence MFP development at 

the midline, we examined the relative morphogenetic movements of both cell populations. 

We injected Tg(−2.4shha-ABC:GFP) embryos with caged Q-rhodamine-conjugated dextran 

(cRD) to enable the simultaneous tracking of optically targeted tissues and GFP-expressing 

midline cells (notochord and MFP progenitors in wildtype embryos and spt morphants; MFP 

progenitors in ntla and ntla;spt morphants). Consistent with earlier studies describing 

convergent-extension movements during zebrafish gastrulation,48, 49 cells derived from the 

lateral margin of wildtype, shield-stage embryos converged toward midline populations by 

early somitogenesis (13 hpf) (Figure 4a). We observed comparable morphogenetic 

movements in Tg(−2.4shha-ABC:GFP) embryos injected with either the ntla or spt MO, 

although the midline/lateral margin boundary was less defined in these single morphants 

(Figure 4b–c). Dorsal convergence of lateral margin-derived cells was also maintained along 

the anterior-posterior axis of Tg(−2.4shha-ABC:GFP) embryos injected with both MOs; 

however, the posterior domain of GFP-positive MFP precursors was dramatically reduced 

and the anterior domain was correspondingly expanded (Figure 4d).

Time-lapse imaging of Tg(−2.4shha-ABC:GFP) ntla;spt morphants further established that 

GFP-positive MFP precursors become excluded from the posterior midline as gastrulation is 

completed (Supplementary Movie 1). These GFP-labeled cells are then increasingly limited 

to anterior regions as somitogenesis proceeds. In contrast, the corresponding MFP 

progenitors in Tg(−2.4shha-ABC:GFP) ntla morphants span the entire midline by the end of 

epiboly and throughout somitogenesis. These observations suggest that ntla- and spt-
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expressing cells within the lateral margin converge toward MFP progenitors by late 

gastrulation and promote either the posterior extension or maintenance of this midline 

population.

To distinguish between these two possibilities, we next investigated whether the posterior 

exclusion in ntla;spt morphants is specific to MFP progenitors or a more general effect on 

midline cells. We injected wildtype embryos with cFD and uncaged the lineage tracer within 

the shield at 6 hpf, using a circular 100-μm-diameter area of irradiation. By the end of 

gastrulation, the fluorescein-positive, shield-derived cells were distributed along the entire 

anterior-posterior axis of the midline, as demarcated by Ntla expression (Supplementary 

Figure 6). However, when these lineage tracing studies were conducted in ntla;spt 

morphants, no fluorescein-positive cells were observed in the posterior midline, and they 

instead populated anterior regions in greater numbers. Thus, loss of Ntla and Spt function 

leads to midline morphogenetic defects that affect shield-derived cells irrespective of fate 

choice.

Nodal signaling is maintained in the absence of Ntla and Spt

Our findings indicate that Ntla and Spt act within the lateral margins of early gastrulae to 

establish conditions required for proper MFP morphogenesis at later stages. This model 

counters earlier suggestions that the two T-box genes act redundantly and non-cell-

autonomously to induce MFP specification, as lateral margin-derived cells converge upon 

the midline only after Nodal signaling-dependent MFP specification has occurred within the 

shield. To investigate these differing models further, we compared Nodal pathway activities 

in wildtype embryos and those lacking Ntla and/or Spt function. Dorsal expression of the 

ligand ndr2 and co-receptor tdgf1 was maintained in single and double morphants during 

gastrulation, the time by which Nodal signaling induces MFP cell fates (Figure 5a–b). 

Accordingly, the Nodal targets paired-like homeodomain 2a (pitx2a)50 and lefty2 (lft2)51 

were transcribed in midline cells under all experimental conditions (Figure 5c–d). Consistent 

with the ectopic expression of MFP marker shhb in ntla;spt morphants, we also observed 

ndr2, tdgf1, pitx2a, and lft2 transcription in ventrolateral regions of the margin, indicating 

that Nodal signaling is actually expanded in embryos lacking Ntla and Spt function.

If a defect in cell movement rather fate specification is the primary cause for posterior MFP 

loss in ntla;spt mutants and morphants, these embryos should have a similar number of MFP 

progenitors as their wildtype and single-morphant counterparts. We therefore analyzed shhb 

transcript levels by quantitative RT-PCR at 22 hpf, by which time the double morphants are 

clearly devoid of posterior MFP cells. Double morphants actually exhibited a slight increase 

in shhb expression levels in comparison to the other experimental conditions (Figure 6a), 

perhaps reflecting the broadened anterior domain of shhb transcription in these embryos. We 

also used flow cytometry to quantify the number of GFP-positive MFP cells in 22-hpf 

Tg(−2.4shha-ABC:GFP) zebrafish injected previously with either the ntla MO or a 

combination of ntla and spt MOs. Corroborating our analyses of T-box gene-dependent shhb 

expression, Tg(−2.4shha-ABC:GFP) embryos lacking Ntla and Spt function had a slightly 

higher percentage of GFP-positive cells than ntla morphants at 22 hpf (Figure 6b), despite 

the absence of posterior MFP in double morphants.
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A new model for Ntla/Spt-dependent MFP development

Taken together, our studies establish a spatiotemporal framework for Ntla- and Spt-

dependent MFP development, addressing many of the questions that have defied 

conventional genetic analyses. First, we observe that loss of these T-box genes, either alone 

or in combination, activates dorsal expression of the MFP marker shhb in shield-stage 

embryos, and shhb is ectopically transcribed in the germ ring of double morphants as 

gastrulation progresses. RT-PCR quantification of shhb transcripts and flow cytometric 

analyses of Tg(−2.4shha-ABC:GFP) zebrafish further reveal that the number of MFP cells 

at later developmental stages is not reduced in zebrafish lacking both T-box genes. In fact, 

the total MFP population is moderately expanded in comparison to wildtype and single-

morphant embryos. These results suggest that the actions of Ntla and Spt on MFP induction 

are primarily repressive in nature and that the transcription factors are dispensable for MFP 

maintenance.

Second, the conditionality afforded by cMOs has enabled us to pinpoint the timing and 

location of Ntla/Spt action. By optochemically generating ntla;spt morphants, we have 

established that the two T-box genes function redundantly during early gastrulation to 

promote posterior MFP development. Although Nodal signaling-dependent MFP induction 

within the dorsal organizer also occurs at this time,27 our studies suggest that the roles of 

Ntla and Spt in posterior MFP formation are unrelated to this process. Nodal signaling in 

maintained in ntla;spt morphants, and lateral margin-specific knockdown of both T-box 

genes is sufficient to cause posterior MFP loss. The co-transcription of ntla and spt in 

ventrolateral regions of gastrula margin contrasts their spatial segregation within the dorsal 

mesoderm, where they contribute to the chordamesoderm and prechordal plate, 

respectively.15, 30 The lateral margins are therefore plausible sites of redundant Ntla and Spt 

function; however, their distal relationship to the shield at the time of MFP induction would 

seemingly require a long-range or relayed inductive signal.

Our findings support an alternative model, in which cells derived from the lateral margin 

influence the morphogenetic movements of MFP progenitors at later stages (Figure 7). In 

accord with earlier reports,48, 49 we find that these cells converge toward the midline during 

epiboly, and by the end of gastrulation they flank cells fated to become MFP. This is the 

same time by which posterior deficits in shha- and shhb-expressing MFP precursors are first 

observed in ntla;spt morphants, eventually leading to a complete loss of MFP progenitors in 

posterior regions and their anterior expansion. Our cell lineage tracing studies further 

demonstrate that the ntla;spt morphant phenotype is not specific to MFP cells but rather 

reflects a general exclusion of shield-derived cells from the posterior midline. Our results 

therefore suggest that loss of Ntla and Spt causes a defect in cell movement rather than MFP 

specification or maintenance. Consistent with this idea, ntla;spt morphants are competent for 

Nodal and Hh signaling and have comparable if not larger numbers of MFP cells in 

comparison to wildtype embryos. Our observations also raise the possibility that 

morphogenetic defects might contribute to other MFP phenotypes with anterior-posterior 

asymmetries, such as the regiospecific rescue of MFP cells in cyc;ntla and cyc;spt 

mutants28, 31
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How lateral margin-derived cells might control MFP morphogenesis remains to be 

elucidated. One possibility is that they provide a signal required for posterior extension of 

the midline. Alternatively, loss of Ntla and Spt activity could alter the morphogenetic and/or 

adhesive properties of these cells, thereby disrupting their biophysical interactions with 

midline populations. In this context, it is notable that lateral margin-derived cells establish a 

less defined boundary with midline tissues in single ntla and spt morphants, and these cells 

even appear to displace posterior midline cells in double morphants. Such altered cellular 

interactions could result at least in part from the ventrolateral expansion of Nodal and Hh 

signaling when both T-box genes are silenced. Defining the Ntla/Spt-dependent 

transcriptome within the lateral margins, perhaps by integrating photoactivatable cMOs with 

other technologies,40 will be an important next step toward deconstructing this process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MFP defects are evident in zebrafish gastrulae lacking Ntla and Spt function
Expression of the MFP marker shhb in wildtype embryos and those without Ntla and/or Spt 

function at (a) 6 hpf, (b), 9 hpf, (c) 10 hpf, and (d) 13 hpf. Brackets demarcate posterior 

regions lacking shhb-expressing MFP progenitors, and arrowheads label ectopic shhb-

positive cells in the germ ring (9 hpf), tailbud (10 hpf), and anterior midline (13 hpf). 

Embryo orientations: dorsal view, anterior up or posterior view, dorsal up. Scale bar: 200 

μm.
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Figure 2. Optochemical control of Spt function
Morphological phenotypes observed in zebrafish embryos injected with the spt cMO, either 

alone (a–b) or in combination with a ntla MO (c–d). Non-irradiated embryos exhibited 

wildtype (a) and ntla mutant (c) patterning, whereas those subjected to global, 360-nm 

irradiation at 3 hpf recapitulated spt (b) and ntla;spt (d) mutant defects. 24-hpf embryos are 

shown in lateral view, anterior left. Scale bar: 200 μm.
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Figure 3. Spatiotemporal analysis of Ntla/Spt-dependent MFP development
(a) Classification of MFP patterning phenotypes, as determined by shhb expression. 24-hpf 

embryos are shown in lateral view, anterior left or dorsal view, anterior left. (b) Phenotypic 

distributions for embryos injected with the indicated oligonucleotides and either cultured in 

the dark or globally irradiated at the designated time points. (c) Regiospecific irradiation of 

the germ ring in 6-hpf embryos, as illustrated by cFD photoactivation within the lateral left 

margin. Graphical depictions and overlaid brightfield and fluorescence micrographs of an 

irradiated embryo are shown. Dorsal (D), ventral (R), and lateral (L) regions of the germ 

ring are labeled, and arrowheads denote the shield. Embryo orientations: lateral view, dorsal 

right or animal pole view, dorsal down. (d) Phenotypic distributions for embryos injected 

with the indicated oligonucleotides and either cultured in the dark or irradiated in the 

designated manner at 6 hpf. Scale bars: 200 μm.
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Figure 4. Convergence of lateral margin-derived cells to the midline
Morphogenetic movement of cells originating from the right lateral margin, as determined 

by injecting Tg(−2.4shha-ABC:GFP) embryos with cRD and regiospecifically irradiating 

the germ ring at 6 hpf. Relative positions of the red-fluorescent, lateral margin-derived cells 

and the GFP-positive midline at 13 hpf are shown for control embryos (a) and those without 

Ntla and/or Spt function (b–d). Embryo orientations: dorsal view, anterior up. Scale bar: 200 

μm.
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Figure 5. Nodal signaling is maintained in zebrafish gastrulae lacking Ntla and Spt function
Expression of the Nodal signaling components (ndr2 and tdgf1; a–b) and transcriptional 

targets (pitx2a and lft2; c–d) in wildtype embryos and those without Ntla and/or Spt 

function. Embryos at 75% epiboly are shown in dorsal view, anterior up or lateral view, 

anterior up. Scale bar: 200 μm.
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Figure 6. MFP cell number is conserved in the absence of Ntla and Spt function
(a) Relative shhb transcript levels in 22-hpf wildtype embryos and those without Ntla and/or 

Spt function, normalized with respect to eef1a1l1 expression. (b) Representative flow 

cytometry scatter plots identifying GFP-positive MFP cells in Tg(−2.4shha-ABC:GFP) 

embryos injected with a ntla MO or a mixture of ntla and spt MOs. (c) Quantification of 

GFP-positive MFP cells. Data are the average of triplicate samples ± s.e.m., and the asterisk 

indicates P < 0.01.
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Figure 7. A model for T-box gene-dependent MFP patterning
Cells derived from the lateral margins (red) converge to flank the midline (green) in 

zebrafish embryos, promoting the extension of MFP progenitors along anterior-posterior 

axis. Loss of Ntla and Spt function in these cells alters their interactions with midline 

populations, leading to the anterior mislocalization of MFP progenitors. Dorsal (D), ventral 

(V), and lateral (L) regions of the margin and selected embryonic structures are labeled.
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